| 1 | // RUN: %clang_analyze_cc1 -std=c++11 -fblocks -verify %s \ |
| 2 | // RUN: -analyzer-checker=core \ |
| 3 | // RUN: -analyzer-checker=cplusplus.NewDelete |
| 4 | // |
| 5 | // RUN: %clang_analyze_cc1 -DLEAKS -std=c++11 -fblocks -verify %s \ |
| 6 | // RUN: -analyzer-checker=core \ |
| 7 | // RUN: -analyzer-checker=cplusplus.NewDeleteLeaks |
| 8 | // |
| 9 | // RUN: %clang_analyze_cc1 -std=c++11 -fblocks -verify %s \ |
| 10 | // RUN: -analyzer-checker=core \ |
| 11 | // RUN: -analyzer-checker=cplusplus.NewDelete \ |
| 12 | // RUN: -analyzer-config c++-allocator-inlining=true |
| 13 | // |
| 14 | // RUN: %clang_analyze_cc1 -DLEAKS -std=c++11 -fblocks -verify %s \ |
| 15 | // RUN: -analyzer-checker=core \ |
| 16 | // RUN: -analyzer-checker=cplusplus.NewDeleteLeaks \ |
| 17 | // RUN: -analyzer-config c++-allocator-inlining=true |
| 18 | // |
| 19 | // RUN: %clang_analyze_cc1 -DTEST_INLINABLE_ALLOCATORS \ |
| 20 | // RUN: -std=c++11 -fblocks -verify %s \ |
| 21 | // RUN: -analyzer-checker=core \ |
| 22 | // RUN: -analyzer-checker=cplusplus.NewDelete |
| 23 | // |
| 24 | // RUN: %clang_analyze_cc1 -DLEAKS -DTEST_INLINABLE_ALLOCATORS \ |
| 25 | // RUN: -std=c++11 -fblocks -verify %s \ |
| 26 | // RUN: -analyzer-checker=core \ |
| 27 | // RUN: -analyzer-checker=cplusplus.NewDeleteLeaks |
| 28 | // |
| 29 | // RUN: %clang_analyze_cc1 -DTEST_INLINABLE_ALLOCATORS \ |
| 30 | // RUN: -std=c++11 -fblocks -verify %s \ |
| 31 | // RUN: -analyzer-checker=core \ |
| 32 | // RUN: -analyzer-checker=cplusplus.NewDelete \ |
| 33 | // RUN: -analyzer-config c++-allocator-inlining=true |
| 34 | // |
| 35 | // RUN: %clang_analyze_cc1 -DLEAKS -DTEST_INLINABLE_ALLOCATORS \ |
| 36 | // RUN: -std=c++11 -fblocks -verify %s \ |
| 37 | // RUN: -analyzer-checker=core \ |
| 38 | // RUN: -analyzer-checker=cplusplus.NewDeleteLeaks \ |
| 39 | // RUN: -analyzer-config c++-allocator-inlining=true |
| 40 | |
| 41 | #include "Inputs/system-header-simulator-cxx.h" |
| 42 | |
| 43 | typedef __typeof__(sizeof(int)) size_t; |
| 44 | extern "C" void *malloc(size_t); |
| 45 | extern "C" void free (void* ptr); |
| 46 | int *global; |
| 47 | |
| 48 | //------------------ |
| 49 | // check for leaks |
| 50 | //------------------ |
| 51 | |
| 52 | //----- Standard non-placement operators |
| 53 | void testGlobalOpNew() { |
| 54 | void *p = operator new(0); |
| 55 | } |
| 56 | #ifdef LEAKS |
| 57 | // expected-warning@-2{{Potential leak of memory pointed to by 'p'}} |
| 58 | #endif |
| 59 | |
| 60 | void testGlobalOpNewArray() { |
| 61 | void *p = operator new[](0); |
| 62 | } |
| 63 | #ifdef LEAKS |
| 64 | // expected-warning@-2{{Potential leak of memory pointed to by 'p'}} |
| 65 | #endif |
| 66 | |
| 67 | void testGlobalNewExpr() { |
| 68 | int *p = new int; |
| 69 | } |
| 70 | #ifdef LEAKS |
| 71 | // expected-warning@-2{{Potential leak of memory pointed to by 'p'}} |
| 72 | #endif |
| 73 | |
| 74 | void testGlobalNewExprArray() { |
| 75 | int *p = new int[0]; |
| 76 | } |
| 77 | #ifdef LEAKS |
| 78 | // expected-warning@-2{{Potential leak of memory pointed to by 'p'}} |
| 79 | #endif |
| 80 | |
| 81 | //----- Standard nothrow placement operators |
| 82 | void testGlobalNoThrowPlacementOpNewBeforeOverload() { |
| 83 | void *p = operator new(0, std::nothrow); |
| 84 | } |
| 85 | #ifdef LEAKS |
| 86 | #ifndef TEST_INLINABLE_ALLOCATORS |
| 87 | // expected-warning@-3{{Potential leak of memory pointed to by 'p'}} |
| 88 | #endif |
| 89 | #endif |
| 90 | |
| 91 | void testGlobalNoThrowPlacementExprNewBeforeOverload() { |
| 92 | int *p = new(std::nothrow) int; |
| 93 | } |
| 94 | #ifdef LEAKS |
| 95 | #ifndef TEST_INLINABLE_ALLOCATORS |
| 96 | // expected-warning@-3{{Potential leak of memory pointed to by 'p'}} |
| 97 | #endif |
| 98 | #endif |
| 99 | |
| 100 | //----- Standard pointer placement operators |
| 101 | void testGlobalPointerPlacementNew() { |
| 102 | int i; |
| 103 | |
| 104 | void *p1 = operator new(0, &i); // no warn |
| 105 | |
| 106 | void *p2 = operator new[](0, &i); // no warn |
| 107 | |
| 108 | int *p3 = new(&i) int; // no warn |
| 109 | |
| 110 | int *p4 = new(&i) int[0]; // no warn |
| 111 | } |
| 112 | |
| 113 | //----- Other cases |
| 114 | void testNewMemoryIsInHeap() { |
| 115 | int *p = new int; |
| 116 | if (global != p) // condition is always true as 'p' wraps a heap region that |
| 117 | // is different from a region wrapped by 'global' |
| 118 | global = p; // pointer escapes |
| 119 | } |
| 120 | |
| 121 | struct PtrWrapper { |
| 122 | int *x; |
| 123 | |
| 124 | PtrWrapper(int *input) : x(input) {} |
| 125 | }; |
| 126 | |
| 127 | void testNewInvalidationPlacement(PtrWrapper *w) { |
| 128 | // Ensure that we don't consider this a leak. |
| 129 | new (w) PtrWrapper(new int); // no warn |
| 130 | } |
| 131 | |
| 132 | //----------------------------------------- |
| 133 | // check for usage of zero-allocated memory |
| 134 | //----------------------------------------- |
| 135 | |
| 136 | void testUseZeroAlloc1() { |
| 137 | int *p = (int *)operator new(0); |
| 138 | *p = 1; // expected-warning {{Use of zero-allocated memory}} |
| 139 | delete p; |
| 140 | } |
| 141 | |
| 142 | int testUseZeroAlloc2() { |
| 143 | int *p = (int *)operator new[](0); |
| 144 | return p[0]; // expected-warning {{Use of zero-allocated memory}} |
| 145 | delete[] p; |
| 146 | } |
| 147 | |
| 148 | void f(int); |
| 149 | |
| 150 | void testUseZeroAlloc3() { |
| 151 | int *p = new int[0]; |
| 152 | f(*p); // expected-warning {{Use of zero-allocated memory}} |
| 153 | delete[] p; |
| 154 | } |
| 155 | |
| 156 | //--------------- |
| 157 | // other checks |
| 158 | //--------------- |
| 159 | |
| 160 | class SomeClass { |
| 161 | public: |
| 162 | void f(int *p); |
| 163 | }; |
| 164 | |
| 165 | void f(int *p1, int *p2 = 0, int *p3 = 0); |
| 166 | void g(SomeClass &c, ...); |
| 167 | |
| 168 | void testUseFirstArgAfterDelete() { |
| 169 | int *p = new int; |
| 170 | delete p; |
| 171 | f(p); // expected-warning{{Use of memory after it is freed}} |
| 172 | } |
| 173 | |
| 174 | void testUseMiddleArgAfterDelete(int *p) { |
| 175 | delete p; |
| 176 | f(0, p); // expected-warning{{Use of memory after it is freed}} |
| 177 | } |
| 178 | |
| 179 | void testUseLastArgAfterDelete(int *p) { |
| 180 | delete p; |
| 181 | f(0, 0, p); // expected-warning{{Use of memory after it is freed}} |
| 182 | } |
| 183 | |
| 184 | void testUseSeveralArgsAfterDelete(int *p) { |
| 185 | delete p; |
| 186 | f(p, p, p); // expected-warning{{Use of memory after it is freed}} |
| 187 | } |
| 188 | |
| 189 | void testUseRefArgAfterDelete(SomeClass &c) { |
| 190 | delete &c; |
| 191 | g(c); // expected-warning{{Use of memory after it is freed}} |
| 192 | } |
| 193 | |
| 194 | void testVariadicArgAfterDelete() { |
| 195 | SomeClass c; |
| 196 | int *p = new int; |
| 197 | delete p; |
| 198 | g(c, 0, p); // expected-warning{{Use of memory after it is freed}} |
| 199 | } |
| 200 | |
| 201 | void testUseMethodArgAfterDelete(int *p) { |
| 202 | SomeClass *c = new SomeClass; |
| 203 | delete p; |
| 204 | c->f(p); // expected-warning{{Use of memory after it is freed}} |
| 205 | } |
| 206 | |
| 207 | void testUseThisAfterDelete() { |
| 208 | SomeClass *c = new SomeClass; |
| 209 | delete c; |
| 210 | c->f(0); // expected-warning{{Use of memory after it is freed}} |
| 211 | } |
| 212 | |
| 213 | void testDoubleDelete() { |
| 214 | int *p = new int; |
| 215 | delete p; |
| 216 | delete p; // expected-warning{{Attempt to free released memory}} |
| 217 | } |
| 218 | |
| 219 | void testExprDeleteArg() { |
| 220 | int i; |
| 221 | delete &i; // expected-warning{{Argument to 'delete' is the address of the local variable 'i', which is not memory allocated by 'new'}} |
| 222 | } |
| 223 | |
| 224 | void testExprDeleteArrArg() { |
| 225 | int i; |
| 226 | delete[] &i; // expected-warning{{Argument to 'delete[]' is the address of the local variable 'i', which is not memory allocated by 'new[]'}} |
| 227 | } |
| 228 | |
| 229 | void testAllocDeallocNames() { |
| 230 | int *p = new(std::nothrow) int[1]; |
| 231 | delete[] (++p); |
| 232 | #ifndef TEST_INLINABLE_ALLOCATORS |
| 233 | // expected-warning@-2{{Argument to 'delete[]' is offset by 4 bytes from the start of memory allocated by 'new[]'}} |
| 234 | #endif |
| 235 | } |
| 236 | |
| 237 | //-------------------------------- |
| 238 | // Test escape of newed const pointer. Note, a const pointer can be deleted. |
| 239 | //-------------------------------- |
| 240 | struct StWithConstPtr { |
| 241 | const int *memp; |
| 242 | }; |
| 243 | void escape(const int &x); |
| 244 | void escapeStruct(const StWithConstPtr &x); |
| 245 | void escapePtr(const StWithConstPtr *x); |
| 246 | void escapeVoidPtr(const void *x); |
| 247 | |
| 248 | void testConstEscape() { |
| 249 | int *p = new int(1); |
| 250 | escape(*p); |
| 251 | } // no-warning |
| 252 | |
| 253 | void testConstEscapeStruct() { |
| 254 | StWithConstPtr *St = new StWithConstPtr(); |
| 255 | escapeStruct(*St); |
| 256 | } // no-warning |
| 257 | |
| 258 | void testConstEscapeStructPtr() { |
| 259 | StWithConstPtr *St = new StWithConstPtr(); |
| 260 | escapePtr(St); |
| 261 | } // no-warning |
| 262 | |
| 263 | void testConstEscapeMember() { |
| 264 | StWithConstPtr St; |
| 265 | St.memp = new int(2); |
| 266 | escapeVoidPtr(St.memp); |
| 267 | } // no-warning |
| 268 | |
| 269 | void testConstEscapePlacementNew() { |
| 270 | int *x = (int *)malloc(sizeof(int)); |
| 271 | void *y = new (x) int; |
| 272 | escapeVoidPtr(y); |
| 273 | } // no-warning |
| 274 | |
| 275 | //============== Test Uninitialized delete delete[]======================== |
| 276 | void testUninitDelete() { |
| 277 | int *x; |
| 278 | int * y = new int; |
| 279 | delete y; |
| 280 | delete x; // expected-warning{{Argument to 'delete' is uninitialized}} |
| 281 | } |
| 282 | |
| 283 | void testUninitDeleteArray() { |
| 284 | int *x; |
| 285 | int * y = new int[5]; |
| 286 | delete[] y; |
| 287 | delete[] x; // expected-warning{{Argument to 'delete[]' is uninitialized}} |
| 288 | } |
| 289 | |
| 290 | void testUninitFree() { |
| 291 | int *x; |
| 292 | free(x); // expected-warning{{1st function call argument is an uninitialized value}} |
| 293 | } |
| 294 | |
| 295 | void testUninitDeleteSink() { |
| 296 | int *x; |
| 297 | delete x; // expected-warning{{Argument to 'delete' is uninitialized}} |
| 298 | (*(volatile int *)0 = 1); // no warn |
| 299 | } |
| 300 | |
| 301 | void testUninitDeleteArraySink() { |
| 302 | int *x; |
| 303 | delete[] x; // expected-warning{{Argument to 'delete[]' is uninitialized}} |
| 304 | (*(volatile int *)0 = 1); // no warn |
| 305 | } |
| 306 | |
| 307 | namespace reference_count { |
| 308 | class control_block { |
| 309 | unsigned count; |
| 310 | public: |
| 311 | control_block() : count(0) {} |
| 312 | void retain() { ++count; } |
| 313 | int release() { return --count; } |
| 314 | }; |
| 315 | |
| 316 | template <typename T> |
| 317 | class shared_ptr { |
| 318 | T *p; |
| 319 | control_block *control; |
| 320 | |
| 321 | public: |
| 322 | shared_ptr() : p(0), control(0) {} |
| 323 | explicit shared_ptr(T *p) : p(p), control(new control_block) { |
| 324 | control->retain(); |
| 325 | } |
| 326 | shared_ptr(shared_ptr &other) : p(other.p), control(other.control) { |
| 327 | if (control) |
| 328 | control->retain(); |
| 329 | } |
| 330 | ~shared_ptr() { |
| 331 | if (control && control->release() == 0) { |
| 332 | delete p; |
| 333 | delete control; |
| 334 | } |
| 335 | }; |
| 336 | |
| 337 | T &operator *() { |
| 338 | return *p; |
| 339 | }; |
| 340 | |
| 341 | void swap(shared_ptr &other) { |
| 342 | T *tmp = p; |
| 343 | p = other.p; |
| 344 | other.p = tmp; |
| 345 | |
| 346 | control_block *ctrlTmp = control; |
| 347 | control = other.control; |
| 348 | other.control = ctrlTmp; |
| 349 | } |
| 350 | }; |
| 351 | |
| 352 | void testSingle() { |
| 353 | shared_ptr<int> a(new int); |
| 354 | *a = 1; |
| 355 | } |
| 356 | |
| 357 | void testDouble() { |
| 358 | shared_ptr<int> a(new int); |
| 359 | shared_ptr<int> b = a; |
| 360 | *a = 1; |
| 361 | } |
| 362 | |
| 363 | void testInvalidated() { |
| 364 | shared_ptr<int> a(new int); |
| 365 | shared_ptr<int> b = a; |
| 366 | *a = 1; |
| 367 | |
| 368 | extern void use(shared_ptr<int> &); |
| 369 | use(b); |
| 370 | } |
| 371 | |
| 372 | void testNestedScope() { |
| 373 | shared_ptr<int> a(new int); |
| 374 | { |
| 375 | shared_ptr<int> b = a; |
| 376 | } |
| 377 | *a = 1; |
| 378 | } |
| 379 | |
| 380 | void testSwap() { |
| 381 | shared_ptr<int> a(new int); |
| 382 | shared_ptr<int> b; |
| 383 | shared_ptr<int> c = a; |
| 384 | shared_ptr<int>(c).swap(b); |
| 385 | } |
| 386 | |
| 387 | void testUseAfterFree() { |
| 388 | int *p = new int; |
| 389 | { |
| 390 | shared_ptr<int> a(p); |
| 391 | shared_ptr<int> b = a; |
| 392 | } |
| 393 | |
| 394 | // FIXME: We should get a warning here, but we don't because we've |
| 395 | // conservatively modeled ~shared_ptr. |
| 396 | *p = 1; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | // Test double delete |
| 401 | class DerefClass{ |
| 402 | public: |
| 403 | int *x; |
| 404 | DerefClass() {} |
| 405 | ~DerefClass() {*x = 1;} |
| 406 | }; |
| 407 | |
| 408 | void testDoubleDeleteClassInstance() { |
| 409 | DerefClass *foo = new DerefClass(); |
| 410 | delete foo; |
| 411 | delete foo; // expected-warning {{Attempt to delete released memory}} |
| 412 | } |
| 413 | |
| 414 | class EmptyClass{ |
| 415 | public: |
| 416 | EmptyClass() {} |
| 417 | ~EmptyClass() {} |
| 418 | }; |
| 419 | |
| 420 | void testDoubleDeleteEmptyClass() { |
| 421 | EmptyClass *foo = new EmptyClass(); |
| 422 | delete foo; |
| 423 | delete foo; // expected-warning {{Attempt to delete released memory}} |
| 424 | } |
| 425 | |
| 426 | struct Base { |
| 427 | virtual ~Base() {} |
| 428 | }; |
| 429 | |
| 430 | struct Derived : Base { |
| 431 | }; |
| 432 | |
| 433 | Base *allocate() { |
| 434 | return new Derived; |
| 435 | } |
| 436 | |
| 437 | void shouldNotReportLeak() { |
| 438 | Derived *p = (Derived *)allocate(); |
| 439 | delete p; |
| 440 | } |
| 441 | |