| 1 | // RUN: %clang_analyze_cc1 -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s |
| 2 | // RUN: %clang_analyze_cc1 -DUSE_BUILTINS -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s |
| 3 | // RUN: %clang_analyze_cc1 -DVARIANT -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s |
| 4 | // RUN: %clang_analyze_cc1 -DUSE_BUILTINS -DVARIANT -analyzer-checker=core,unix.cstring,alpha.unix.cstring,debug.ExprInspection -analyzer-store=region -verify -analyzer-config eagerly-assume=false %s |
| 5 | |
| 6 | //===----------------------------------------------------------------------=== |
| 7 | // Declarations |
| 8 | //===----------------------------------------------------------------------=== |
| 9 | |
| 10 | // Some functions are so similar to each other that they follow the same code |
| 11 | // path, such as memcpy and __memcpy_chk, or memcmp and bcmp. If VARIANT is |
| 12 | // defined, make sure to use the variants instead to make sure they are still |
| 13 | // checked by the analyzer. |
| 14 | |
| 15 | // Some functions are implemented as builtins. These should be #defined as |
| 16 | // BUILTIN(f), which will prepend "__builtin_" if USE_BUILTINS is defined. |
| 17 | |
| 18 | // Functions that have variants and are also available as builtins should be |
| 19 | // declared carefully! See memcpy() for an example. |
| 20 | |
| 21 | #ifdef USE_BUILTINS |
| 22 | # define BUILTIN(f) __builtin_ ## f |
| 23 | #else /* USE_BUILTINS */ |
| 24 | # define BUILTIN(f) f |
| 25 | #endif /* USE_BUILTINS */ |
| 26 | |
| 27 | typedef typeof(sizeof(int)) size_t; |
| 28 | |
| 29 | void clang_analyzer_eval(int); |
| 30 | |
| 31 | //===----------------------------------------------------------------------=== |
| 32 | // memcpy() |
| 33 | //===----------------------------------------------------------------------=== |
| 34 | |
| 35 | #ifdef VARIANT |
| 36 | |
| 37 | #define __memcpy_chk BUILTIN(__memcpy_chk) |
| 38 | void *__memcpy_chk(void *restrict s1, const void *restrict s2, size_t n, |
| 39 | size_t destlen); |
| 40 | |
| 41 | #define memcpy(a,b,c) __memcpy_chk(a,b,c,(size_t)-1) |
| 42 | |
| 43 | #else /* VARIANT */ |
| 44 | |
| 45 | #define memcpy BUILTIN(memcpy) |
| 46 | void *memcpy(void *restrict s1, const void *restrict s2, size_t n); |
| 47 | |
| 48 | #endif /* VARIANT */ |
| 49 | |
| 50 | |
| 51 | void memcpy0 () { |
| 52 | char src[] = {1, 2, 3, 4}; |
| 53 | char dst[4] = {0}; |
| 54 | |
| 55 | memcpy(dst, src, 4); // no-warning |
| 56 | |
| 57 | clang_analyzer_eval(memcpy(dst, src, 4) == dst); // expected-warning{{TRUE}} |
| 58 | |
| 59 | // If we actually model the copy, we can make this known. |
| 60 | // The important thing for now is that the old value has been invalidated. |
| 61 | clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} |
| 62 | } |
| 63 | |
| 64 | void memcpy1 () { |
| 65 | char src[] = {1, 2, 3, 4}; |
| 66 | char dst[10]; |
| 67 | |
| 68 | memcpy(dst, src, 5); // expected-warning{{Memory copy function accesses out-of-bound array element}} |
| 69 | } |
| 70 | |
| 71 | void memcpy2 () { |
| 72 | char src[] = {1, 2, 3, 4}; |
| 73 | char dst[1]; |
| 74 | |
| 75 | memcpy(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}} |
| 76 | #ifndef VARIANT |
| 77 | // expected-warning@-2{{memcpy' will always overflow; destination buffer has size 1, but size argument is 4}} |
| 78 | #endif |
| 79 | } |
| 80 | |
| 81 | void memcpy3 () { |
| 82 | char src[] = {1, 2, 3, 4}; |
| 83 | char dst[3]; |
| 84 | |
| 85 | memcpy(dst+1, src+2, 2); // no-warning |
| 86 | } |
| 87 | |
| 88 | void memcpy4 () { |
| 89 | char src[] = {1, 2, 3, 4}; |
| 90 | char dst[10]; |
| 91 | |
| 92 | memcpy(dst+2, src+2, 3); // expected-warning{{Memory copy function accesses out-of-bound array element}} |
| 93 | } |
| 94 | |
| 95 | void memcpy5() { |
| 96 | char src[] = {1, 2, 3, 4}; |
| 97 | char dst[3]; |
| 98 | |
| 99 | memcpy(dst+2, src+2, 2); // expected-warning{{Memory copy function overflows destination buffer}} |
| 100 | #ifndef VARIANT |
| 101 | // expected-warning@-2{{memcpy' will always overflow; destination buffer has size 1, but size argument is 2}} |
| 102 | #endif |
| 103 | } |
| 104 | |
| 105 | void memcpy6() { |
| 106 | int a[4] = {0}; |
| 107 | memcpy(a, a, 8); // expected-warning{{overlapping}} |
| 108 | } |
| 109 | |
| 110 | void memcpy7() { |
| 111 | int a[4] = {0}; |
| 112 | memcpy(a+2, a+1, 8); // expected-warning{{overlapping}} |
| 113 | } |
| 114 | |
| 115 | void memcpy8() { |
| 116 | int a[4] = {0}; |
| 117 | memcpy(a+1, a+2, 8); // expected-warning{{overlapping}} |
| 118 | } |
| 119 | |
| 120 | void memcpy9() { |
| 121 | int a[4] = {0}; |
| 122 | memcpy(a+2, a+1, 4); // no-warning |
| 123 | memcpy(a+1, a+2, 4); // no-warning |
| 124 | } |
| 125 | |
| 126 | void memcpy10() { |
| 127 | char a[4] = {0}; |
| 128 | memcpy(0, a, 4); // expected-warning{{Null pointer argument in call to memory copy function}} |
| 129 | } |
| 130 | |
| 131 | void memcpy11() { |
| 132 | char a[4] = {0}; |
| 133 | memcpy(a, 0, 4); // expected-warning{{Null pointer argument in call to memory copy function}} |
| 134 | } |
| 135 | |
| 136 | void memcpy12() { |
| 137 | char a[4] = {0}; |
| 138 | memcpy(0, a, 0); // no-warning |
| 139 | } |
| 140 | |
| 141 | void memcpy13() { |
| 142 | char a[4] = {0}; |
| 143 | memcpy(a, 0, 0); // no-warning |
| 144 | } |
| 145 | |
| 146 | void memcpy_unknown_size (size_t n) { |
| 147 | char a[4], b[4] = {1}; |
| 148 | clang_analyzer_eval(memcpy(a, b, n) == a); // expected-warning{{TRUE}} |
| 149 | } |
| 150 | |
| 151 | void memcpy_unknown_size_warn (size_t n) { |
| 152 | char a[4]; |
| 153 | void *result = memcpy(a, 0, n); // expected-warning{{Null pointer argument in call to memory copy function}} |
| 154 | clang_analyzer_eval(result == a); // no-warning (above is fatal) |
| 155 | } |
| 156 | |
| 157 | //===----------------------------------------------------------------------=== |
| 158 | // mempcpy() |
| 159 | //===----------------------------------------------------------------------=== |
| 160 | |
| 161 | #ifdef VARIANT |
| 162 | |
| 163 | #define __mempcpy_chk BUILTIN(__mempcpy_chk) |
| 164 | void *__mempcpy_chk(void *restrict s1, const void *restrict s2, size_t n, |
| 165 | size_t destlen); |
| 166 | |
| 167 | #define mempcpy(a,b,c) __mempcpy_chk(a,b,c,(size_t)-1) |
| 168 | |
| 169 | #else /* VARIANT */ |
| 170 | |
| 171 | #define mempcpy BUILTIN(mempcpy) |
| 172 | void *mempcpy(void *restrict s1, const void *restrict s2, size_t n); |
| 173 | |
| 174 | #endif /* VARIANT */ |
| 175 | |
| 176 | |
| 177 | void mempcpy0 () { |
| 178 | char src[] = {1, 2, 3, 4}; |
| 179 | char dst[5] = {0}; |
| 180 | |
| 181 | mempcpy(dst, src, 4); // no-warning |
| 182 | |
| 183 | clang_analyzer_eval(mempcpy(dst, src, 4) == &dst[4]); // expected-warning{{TRUE}} |
| 184 | |
| 185 | // If we actually model the copy, we can make this known. |
| 186 | // The important thing for now is that the old value has been invalidated. |
| 187 | clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} |
| 188 | } |
| 189 | |
| 190 | void mempcpy1 () { |
| 191 | char src[] = {1, 2, 3, 4}; |
| 192 | char dst[10]; |
| 193 | |
| 194 | mempcpy(dst, src, 5); // expected-warning{{Memory copy function accesses out-of-bound array element}} |
| 195 | } |
| 196 | |
| 197 | void mempcpy2 () { |
| 198 | char src[] = {1, 2, 3, 4}; |
| 199 | char dst[1]; |
| 200 | |
| 201 | mempcpy(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}} |
| 202 | } |
| 203 | |
| 204 | void mempcpy3 () { |
| 205 | char src[] = {1, 2, 3, 4}; |
| 206 | char dst[3]; |
| 207 | |
| 208 | mempcpy(dst+1, src+2, 2); // no-warning |
| 209 | } |
| 210 | |
| 211 | void mempcpy4 () { |
| 212 | char src[] = {1, 2, 3, 4}; |
| 213 | char dst[10]; |
| 214 | |
| 215 | mempcpy(dst+2, src+2, 3); // expected-warning{{Memory copy function accesses out-of-bound array element}} |
| 216 | } |
| 217 | |
| 218 | void mempcpy5() { |
| 219 | char src[] = {1, 2, 3, 4}; |
| 220 | char dst[3]; |
| 221 | |
| 222 | mempcpy(dst+2, src+2, 2); // expected-warning{{Memory copy function overflows destination buffer}} |
| 223 | } |
| 224 | |
| 225 | void mempcpy6() { |
| 226 | int a[4] = {0}; |
| 227 | mempcpy(a, a, 8); // expected-warning{{overlapping}} |
| 228 | } |
| 229 | |
| 230 | void mempcpy7() { |
| 231 | int a[4] = {0}; |
| 232 | mempcpy(a+2, a+1, 8); // expected-warning{{overlapping}} |
| 233 | } |
| 234 | |
| 235 | void mempcpy8() { |
| 236 | int a[4] = {0}; |
| 237 | mempcpy(a+1, a+2, 8); // expected-warning{{overlapping}} |
| 238 | } |
| 239 | |
| 240 | void mempcpy9() { |
| 241 | int a[4] = {0}; |
| 242 | mempcpy(a+2, a+1, 4); // no-warning |
| 243 | mempcpy(a+1, a+2, 4); // no-warning |
| 244 | } |
| 245 | |
| 246 | void mempcpy10() { |
| 247 | char a[4] = {0}; |
| 248 | mempcpy(0, a, 4); // expected-warning{{Null pointer argument in call to memory copy function}} |
| 249 | } |
| 250 | |
| 251 | void mempcpy11() { |
| 252 | char a[4] = {0}; |
| 253 | mempcpy(a, 0, 4); // expected-warning{{Null pointer argument in call to memory copy function}} |
| 254 | } |
| 255 | |
| 256 | void mempcpy12() { |
| 257 | char a[4] = {0}; |
| 258 | mempcpy(0, a, 0); // no-warning |
| 259 | } |
| 260 | |
| 261 | void mempcpy13() { |
| 262 | char a[4] = {0}; |
| 263 | mempcpy(a, 0, 0); // no-warning |
| 264 | } |
| 265 | |
| 266 | void mempcpy14() { |
| 267 | int src[] = {1, 2, 3, 4}; |
| 268 | int dst[5] = {0}; |
| 269 | int *p; |
| 270 | |
| 271 | p = mempcpy(dst, src, 4 * sizeof(int)); |
| 272 | |
| 273 | clang_analyzer_eval(p == &dst[4]); // expected-warning{{TRUE}} |
| 274 | } |
| 275 | |
| 276 | struct st { |
| 277 | int i; |
| 278 | int j; |
| 279 | }; |
| 280 | |
| 281 | void mempcpy15() { |
| 282 | struct st s1 = {0}; |
| 283 | struct st s2; |
| 284 | struct st *p1; |
| 285 | struct st *p2; |
| 286 | |
| 287 | p1 = (&s2) + 1; |
| 288 | p2 = mempcpy(&s2, &s1, sizeof(struct st)); |
| 289 | |
| 290 | clang_analyzer_eval(p1 == p2); // expected-warning{{TRUE}} |
| 291 | } |
| 292 | |
| 293 | void mempcpy16() { |
| 294 | struct st s1[10] = {{0}}; |
| 295 | struct st s2[10]; |
| 296 | struct st *p1; |
| 297 | struct st *p2; |
| 298 | |
| 299 | p1 = (&s2[0]) + 5; |
| 300 | p2 = mempcpy(&s2[0], &s1[0], 5 * sizeof(struct st)); |
| 301 | |
| 302 | clang_analyzer_eval(p1 == p2); // expected-warning{{TRUE}} |
| 303 | } |
| 304 | |
| 305 | void mempcpy_unknown_size_warn (size_t n) { |
| 306 | char a[4]; |
| 307 | void *result = mempcpy(a, 0, n); // expected-warning{{Null pointer argument in call to memory copy function}} |
| 308 | clang_analyzer_eval(result == a); // no-warning (above is fatal) |
| 309 | } |
| 310 | |
| 311 | void mempcpy_unknownable_size (char *src, float n) { |
| 312 | char a[4]; |
| 313 | // This used to crash because we don't model floats. |
| 314 | mempcpy(a, src, (size_t)n); |
| 315 | } |
| 316 | |
| 317 | //===----------------------------------------------------------------------=== |
| 318 | // memmove() |
| 319 | //===----------------------------------------------------------------------=== |
| 320 | |
| 321 | #ifdef VARIANT |
| 322 | |
| 323 | #define __memmove_chk BUILTIN(__memmove_chk) |
| 324 | void *__memmove_chk(void *s1, const void *s2, size_t n, size_t destlen); |
| 325 | |
| 326 | #define memmove(a,b,c) __memmove_chk(a,b,c,(size_t)-1) |
| 327 | |
| 328 | #else /* VARIANT */ |
| 329 | |
| 330 | #define memmove BUILTIN(memmove) |
| 331 | void *memmove(void *s1, const void *s2, size_t n); |
| 332 | |
| 333 | #endif /* VARIANT */ |
| 334 | |
| 335 | |
| 336 | void memmove0 () { |
| 337 | char src[] = {1, 2, 3, 4}; |
| 338 | char dst[4] = {0}; |
| 339 | |
| 340 | memmove(dst, src, 4); // no-warning |
| 341 | |
| 342 | clang_analyzer_eval(memmove(dst, src, 4) == dst); // expected-warning{{TRUE}} |
| 343 | |
| 344 | // If we actually model the copy, we can make this known. |
| 345 | // The important thing for now is that the old value has been invalidated. |
| 346 | clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} |
| 347 | } |
| 348 | |
| 349 | void memmove1 () { |
| 350 | char src[] = {1, 2, 3, 4}; |
| 351 | char dst[10]; |
| 352 | |
| 353 | memmove(dst, src, 5); // expected-warning{{out-of-bound}} |
| 354 | } |
| 355 | |
| 356 | void memmove2 () { |
| 357 | char src[] = {1, 2, 3, 4}; |
| 358 | char dst[1]; |
| 359 | |
| 360 | memmove(dst, src, 4); // expected-warning{{Memory copy function overflows destination buffer}} |
| 361 | #ifndef VARIANT |
| 362 | // expected-warning@-2{{memmove' will always overflow; destination buffer has size 1, but size argument is 4}} |
| 363 | #endif |
| 364 | } |
| 365 | |
| 366 | //===----------------------------------------------------------------------=== |
| 367 | // memcmp() |
| 368 | //===----------------------------------------------------------------------=== |
| 369 | |
| 370 | #ifdef VARIANT |
| 371 | |
| 372 | #define bcmp BUILTIN(bcmp) |
| 373 | int bcmp(const void *s1, const void *s2, size_t n); |
| 374 | #define memcmp bcmp |
| 375 | // |
| 376 | #else /* VARIANT */ |
| 377 | |
| 378 | #define memcmp BUILTIN(memcmp) |
| 379 | int memcmp(const void *s1, const void *s2, size_t n); |
| 380 | |
| 381 | #endif /* VARIANT */ |
| 382 | |
| 383 | |
| 384 | void memcmp0 () { |
| 385 | char a[] = {1, 2, 3, 4}; |
| 386 | char b[4] = { 0 }; |
| 387 | |
| 388 | memcmp(a, b, 4); // no-warning |
| 389 | } |
| 390 | |
| 391 | void memcmp1 () { |
| 392 | char a[] = {1, 2, 3, 4}; |
| 393 | char b[10] = { 0 }; |
| 394 | |
| 395 | memcmp(a, b, 5); // expected-warning{{out-of-bound}} |
| 396 | } |
| 397 | |
| 398 | void memcmp2 () { |
| 399 | char a[] = {1, 2, 3, 4}; |
| 400 | char b[1] = { 0 }; |
| 401 | |
| 402 | memcmp(a, b, 4); // expected-warning{{out-of-bound}} |
| 403 | } |
| 404 | |
| 405 | void memcmp3 () { |
| 406 | char a[] = {1, 2, 3, 4}; |
| 407 | |
| 408 | clang_analyzer_eval(memcmp(a, a, 4) == 0); // expected-warning{{TRUE}} |
| 409 | } |
| 410 | |
| 411 | void memcmp4 (char *input) { |
| 412 | char a[] = {1, 2, 3, 4}; |
| 413 | |
| 414 | clang_analyzer_eval(memcmp(a, input, 4) == 0); // expected-warning{{UNKNOWN}} |
| 415 | } |
| 416 | |
| 417 | void memcmp5 (char *input) { |
| 418 | char a[] = {1, 2, 3, 4}; |
| 419 | |
| 420 | clang_analyzer_eval(memcmp(a, 0, 0) == 0); // expected-warning{{TRUE}} |
| 421 | clang_analyzer_eval(memcmp(0, a, 0) == 0); // expected-warning{{TRUE}} |
| 422 | clang_analyzer_eval(memcmp(a, input, 0) == 0); // expected-warning{{TRUE}} |
| 423 | } |
| 424 | |
| 425 | void memcmp6 (char *a, char *b, size_t n) { |
| 426 | int result = memcmp(a, b, n); |
| 427 | if (result != 0) |
| 428 | clang_analyzer_eval(n != 0); // expected-warning{{TRUE}} |
| 429 | // else |
| 430 | // analyzer_assert_unknown(n == 0); |
| 431 | |
| 432 | // We can't do the above comparison because n has already been constrained. |
| 433 | // On one path n == 0, on the other n != 0. |
| 434 | } |
| 435 | |
| 436 | int memcmp7 (char *a, size_t x, size_t y, size_t n) { |
| 437 | // We used to crash when either of the arguments was unknown. |
| 438 | return memcmp(a, &a[x*y], n) + |
| 439 | memcmp(&a[x*y], a, n); |
| 440 | } |
| 441 | |
| 442 | //===----------------------------------------------------------------------=== |
| 443 | // bcopy() |
| 444 | //===----------------------------------------------------------------------=== |
| 445 | |
| 446 | #define bcopy BUILTIN(bcopy) |
| 447 | // __builtin_bcopy is not defined with const in Builtins.def. |
| 448 | void bcopy(/*const*/ void *s1, void *s2, size_t n); |
| 449 | |
| 450 | |
| 451 | void bcopy0 () { |
| 452 | char src[] = {1, 2, 3, 4}; |
| 453 | char dst[4] = {0}; |
| 454 | |
| 455 | bcopy(src, dst, 4); // no-warning |
| 456 | |
| 457 | // If we actually model the copy, we can make this known. |
| 458 | // The important thing for now is that the old value has been invalidated. |
| 459 | clang_analyzer_eval(dst[0] != 0); // expected-warning{{UNKNOWN}} |
| 460 | } |
| 461 | |
| 462 | void bcopy1 () { |
| 463 | char src[] = {1, 2, 3, 4}; |
| 464 | char dst[10]; |
| 465 | |
| 466 | bcopy(src, dst, 5); // expected-warning{{out-of-bound}} |
| 467 | } |
| 468 | |
| 469 | void bcopy2 () { |
| 470 | char src[] = {1, 2, 3, 4}; |
| 471 | char dst[1]; |
| 472 | |
| 473 | bcopy(src, dst, 4); // expected-warning{{overflow}} |
| 474 | } |
| 475 | |
| 476 | void *malloc(size_t); |
| 477 | void free(void *); |
| 478 | char radar_11125445_memcopythenlogfirstbyte(const char *input, size_t length) { |
| 479 | char *bytes = malloc(sizeof(char) * (length + 1)); |
| 480 | memcpy(bytes, input, length); |
| 481 | char x = bytes[0]; // no warning |
| 482 | free(bytes); |
| 483 | return x; |
| 484 | } |
| 485 | |
| 486 | struct S { |
| 487 | char f; |
| 488 | }; |
| 489 | |
| 490 | void nocrash_on_locint_offset(void *addr, void* from, struct S s) { |
| 491 | int iAdd = (int) addr; |
| 492 | memcpy(((void *) &(s.f)), from, iAdd); |
| 493 | } |
| 494 | |