| 1 | // RUN: %clang_analyze_cc1 -analyzer-store=region -verify \ |
| 2 | // RUN: -analyzer-checker=core \ |
| 3 | // RUN: -analyzer-checker=alpha.deadcode.UnreachableCode \ |
| 4 | // RUN: -analyzer-checker=alpha.core.CastSize \ |
| 5 | // RUN: -analyzer-checker=unix.Malloc \ |
| 6 | // RUN: -analyzer-config unix.DynamicMemoryModeling:Optimistic=true %s |
| 7 | |
| 8 | typedef __typeof(sizeof(int)) size_t; |
| 9 | void *malloc(size_t); |
| 10 | void free(void *); |
| 11 | void *realloc(void *ptr, size_t size); |
| 12 | void *calloc(size_t nmemb, size_t size); |
| 13 | void __attribute((ownership_returns(malloc))) *my_malloc(size_t); |
| 14 | void __attribute((ownership_takes(malloc, 1))) my_free(void *); |
| 15 | void my_freeBoth(void *, void *) |
| 16 | __attribute((ownership_holds(malloc, 1, 2))); |
| 17 | void __attribute((ownership_returns(malloc, 1))) *my_malloc2(size_t); |
| 18 | void __attribute((ownership_holds(malloc, 1))) my_hold(void *); |
| 19 | |
| 20 | // Duplicate attributes are silly, but not an error. |
| 21 | // Duplicate attribute has no extra effect. |
| 22 | // If two are of different kinds, that is an error and reported as such. |
| 23 | void __attribute((ownership_holds(malloc, 1))) |
| 24 | __attribute((ownership_holds(malloc, 1))) |
| 25 | __attribute((ownership_holds(malloc, 3))) my_hold2(void *, void *, void *); |
| 26 | void *my_malloc3(size_t); |
| 27 | void *myglobalpointer; |
| 28 | struct stuff { |
| 29 | void *somefield; |
| 30 | }; |
| 31 | struct stuff myglobalstuff; |
| 32 | |
| 33 | void f1() { |
| 34 | int *p = malloc(12); |
| 35 | return; // expected-warning{{Potential leak of memory pointed to by}} |
| 36 | } |
| 37 | |
| 38 | void f2() { |
| 39 | int *p = malloc(12); |
| 40 | free(p); |
| 41 | free(p); // expected-warning{{Attempt to free released memory}} |
| 42 | } |
| 43 | |
| 44 | void f2_realloc_0() { |
| 45 | int *p = malloc(12); |
| 46 | realloc(p,0); |
| 47 | realloc(p,0); // expected-warning{{Attempt to free released memory}} |
| 48 | } |
| 49 | |
| 50 | void f2_realloc_1() { |
| 51 | int *p = malloc(12); |
| 52 | int *q = realloc(p,0); // no-warning |
| 53 | } |
| 54 | |
| 55 | // ownership attributes tests |
| 56 | void naf1() { |
| 57 | int *p = my_malloc3(12); |
| 58 | return; // no-warning |
| 59 | } |
| 60 | |
| 61 | void n2af1() { |
| 62 | int *p = my_malloc2(12); |
| 63 | return; // expected-warning{{Potential leak of memory pointed to by}} |
| 64 | } |
| 65 | |
| 66 | void af1() { |
| 67 | int *p = my_malloc(12); |
| 68 | return; // expected-warning{{Potential leak of memory pointed to by}} |
| 69 | } |
| 70 | |
| 71 | void af1_b() { |
| 72 | int *p = my_malloc(12); |
| 73 | } // expected-warning{{Potential leak of memory pointed to by}} |
| 74 | |
| 75 | void af1_c() { |
| 76 | myglobalpointer = my_malloc(12); // no-warning |
| 77 | } |
| 78 | |
| 79 | void af1_d() { |
| 80 | struct stuff mystuff; |
| 81 | mystuff.somefield = my_malloc(12); |
| 82 | } // expected-warning{{Potential leak of memory pointed to by}} |
| 83 | |
| 84 | // Test that we can pass out allocated memory via pointer-to-pointer. |
| 85 | void af1_e(void **pp) { |
| 86 | *pp = my_malloc(42); // no-warning |
| 87 | } |
| 88 | |
| 89 | void af1_f(struct stuff *somestuff) { |
| 90 | somestuff->somefield = my_malloc(12); // no-warning |
| 91 | } |
| 92 | |
| 93 | // Allocating memory for a field via multiple indirections to our arguments is OK. |
| 94 | void af1_g(struct stuff **pps) { |
| 95 | *pps = my_malloc(sizeof(struct stuff)); // no-warning |
| 96 | (*pps)->somefield = my_malloc(42); // no-warning |
| 97 | } |
| 98 | |
| 99 | void af2() { |
| 100 | int *p = my_malloc(12); |
| 101 | my_free(p); |
| 102 | free(p); // expected-warning{{Attempt to free released memory}} |
| 103 | } |
| 104 | |
| 105 | void af2b() { |
| 106 | int *p = my_malloc(12); |
| 107 | free(p); |
| 108 | my_free(p); // expected-warning{{Attempt to free released memory}} |
| 109 | } |
| 110 | |
| 111 | void af2c() { |
| 112 | int *p = my_malloc(12); |
| 113 | free(p); |
| 114 | my_hold(p); // expected-warning{{Attempt to free released memory}} |
| 115 | } |
| 116 | |
| 117 | void af2d() { |
| 118 | int *p = my_malloc(12); |
| 119 | free(p); |
| 120 | my_hold2(0, 0, p); // expected-warning{{Attempt to free released memory}} |
| 121 | } |
| 122 | |
| 123 | // No leak if malloc returns null. |
| 124 | void af2e() { |
| 125 | int *p = my_malloc(12); |
| 126 | if (!p) |
| 127 | return; // no-warning |
| 128 | free(p); // no-warning |
| 129 | } |
| 130 | |
| 131 | // This case inflicts a possible double-free. |
| 132 | void af3() { |
| 133 | int *p = my_malloc(12); |
| 134 | my_hold(p); |
| 135 | free(p); // expected-warning{{Attempt to free non-owned memory}} |
| 136 | } |
| 137 | |
| 138 | int * af4() { |
| 139 | int *p = my_malloc(12); |
| 140 | my_free(p); |
| 141 | return p; // expected-warning{{Use of memory after it is freed}} |
| 142 | } |
| 143 | |
| 144 | // This case is (possibly) ok, be conservative |
| 145 | int * af5() { |
| 146 | int *p = my_malloc(12); |
| 147 | my_hold(p); |
| 148 | return p; // no-warning |
| 149 | } |
| 150 | |
| 151 | |
| 152 | |
| 153 | // This case tests that storing malloc'ed memory to a static variable which is |
| 154 | // then returned is not leaked. In the absence of known contracts for functions |
| 155 | // or inter-procedural analysis, this is a conservative answer. |
| 156 | int *f3() { |
| 157 | static int *p = 0; |
| 158 | p = malloc(12); |
| 159 | return p; // no-warning |
| 160 | } |
| 161 | |
| 162 | // This case tests that storing malloc'ed memory to a static global variable |
| 163 | // which is then returned is not leaked. In the absence of known contracts for |
| 164 | // functions or inter-procedural analysis, this is a conservative answer. |
| 165 | static int *p_f4 = 0; |
| 166 | int *f4() { |
| 167 | p_f4 = malloc(12); |
| 168 | return p_f4; // no-warning |
| 169 | } |
| 170 | |
| 171 | int *f5() { |
| 172 | int *q = malloc(12); |
| 173 | q = realloc(q, 20); |
| 174 | return q; // no-warning |
| 175 | } |
| 176 | |
| 177 | void f6() { |
| 178 | int *p = malloc(12); |
| 179 | if (!p) |
| 180 | return; // no-warning |
| 181 | else |
| 182 | free(p); |
| 183 | } |
| 184 | |
| 185 | void f6_realloc() { |
| 186 | int *p = malloc(12); |
| 187 | if (!p) |
| 188 | return; // no-warning |
| 189 | else |
| 190 | realloc(p,0); |
| 191 | } |
| 192 | |
| 193 | |
| 194 | char *doit2(); |
| 195 | void pr6069() { |
| 196 | char *buf = doit2(); |
| 197 | free(buf); |
| 198 | } |
| 199 | |
| 200 | void pr6293() { |
| 201 | free(0); |
| 202 | } |
| 203 | |
| 204 | void f7() { |
| 205 | char *x = (char*) malloc(4); |
| 206 | free(x); |
| 207 | x[0] = 'a'; // expected-warning{{Use of memory after it is freed}} |
| 208 | } |
| 209 | |
| 210 | void f7_realloc() { |
| 211 | char *x = (char*) malloc(4); |
| 212 | realloc(x,0); |
| 213 | x[0] = 'a'; // expected-warning{{Use of memory after it is freed}} |
| 214 | } |
| 215 | |
| 216 | void PR6123() { |
| 217 | int *x = malloc(11); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
| 218 | } |
| 219 | |
| 220 | void PR7217() { |
| 221 | int *buf = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}} |
| 222 | buf[1] = 'c'; // not crash |
| 223 | } |
| 224 | |
| 225 | void mallocCastToVoid() { |
| 226 | void *p = malloc(2); |
| 227 | const void *cp = p; // not crash |
| 228 | free(p); |
| 229 | } |
| 230 | |
| 231 | void mallocCastToFP() { |
| 232 | void *p = malloc(2); |
| 233 | void (*fp)() = p; // not crash |
| 234 | free(p); |
| 235 | } |
| 236 | |
| 237 | // This tests that malloc() buffers are undefined by default |
| 238 | char mallocGarbage () { |
| 239 | char *buf = malloc(2); |
| 240 | char result = buf[1]; // expected-warning{{undefined}} |
| 241 | free(buf); |
| 242 | return result; |
| 243 | } |
| 244 | |
| 245 | // This tests that calloc() buffers need to be freed |
| 246 | void callocNoFree () { |
| 247 | char *buf = calloc(2,2); |
| 248 | return; // expected-warning{{Potential leak of memory pointed to by}} |
| 249 | } |
| 250 | |
| 251 | // These test that calloc() buffers are zeroed by default |
| 252 | char callocZeroesGood () { |
| 253 | char *buf = calloc(2,2); |
| 254 | char result = buf[3]; // no-warning |
| 255 | if (buf[1] == 0) { |
| 256 | free(buf); |
| 257 | } |
| 258 | return result; // no-warning |
| 259 | } |
| 260 | |
| 261 | char callocZeroesBad () { |
| 262 | char *buf = calloc(2,2); |
| 263 | char result = buf[3]; // no-warning |
| 264 | if (buf[1] != 0) { |
| 265 | free(buf); // expected-warning{{never executed}} |
| 266 | } |
| 267 | return result; // expected-warning{{Potential leak of memory pointed to by}} |
| 268 | } |
| 269 | |
| 270 | void testMultipleFreeAnnotations() { |
| 271 | int *p = malloc(12); |
| 272 | int *q = malloc(12); |
| 273 | my_freeBoth(p, q); |
| 274 | } |
| 275 | |
| 276 | |