| 1 | // RUN: %clang_cc1 -fsyntax-only -verify -std=gnu++11 %s |
| 2 | // RUN: %clang_cc1 -fsyntax-only -verify -Wno-c++11-extensions -Wno-local-type-template-args %s |
| 3 | // RUN: %clang_cc1 -fsyntax-only -verify -Wno-c++11-extensions -Wno-local-type-template-args -fmodules %s |
| 4 | |
| 5 | namespace test1 { |
| 6 | int x; // expected-note {{previous definition is here}} |
| 7 | static int y; |
| 8 | void f() {} // expected-note {{previous definition is here}} |
| 9 | |
| 10 | extern "C" { |
| 11 | extern int x; // expected-error {{declaration of 'x' has a different language linkage}} |
| 12 | extern int y; // OK, has internal linkage, so no language linkage. |
| 13 | void f(); // expected-error {{declaration of 'f' has a different language linkage}} |
| 14 | } |
| 15 | } |
| 16 | |
| 17 | // This is OK. Both test2_f don't have language linkage since they have |
| 18 | // internal linkage. |
| 19 | extern "C" { |
| 20 | static void test2_f() { |
| 21 | } |
| 22 | static void test2_f(int x) { |
| 23 | } |
| 24 | } |
| 25 | |
| 26 | namespace test3 { |
| 27 | extern "C" { |
| 28 | namespace { |
| 29 | extern int x2; |
| 30 | void f2(); |
| 31 | } |
| 32 | } |
| 33 | namespace { |
| 34 | int x2; |
| 35 | void f2() {} |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | namespace test4 { |
| 40 | void dummy() { |
| 41 | void Bar(); |
| 42 | class A { |
| 43 | friend void Bar(); |
| 44 | }; |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | namespace test5 { |
| 49 | static void g(); |
| 50 | void f() |
| 51 | { |
| 52 | void g(); |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | // pr14898 |
| 57 | namespace test6 { |
| 58 | template <class _Rp> |
| 59 | class __attribute__ ((__visibility__("default"))) shared_future; |
| 60 | template <class _Rp> |
| 61 | class future { |
| 62 | template <class> friend class shared_future; |
| 63 | shared_future<_Rp> share(); |
| 64 | }; |
| 65 | template <class _Rp> future<_Rp> |
| 66 | get_future(); |
| 67 | template <class _Rp> |
| 68 | struct shared_future<_Rp&> { |
| 69 | shared_future(future<_Rp&>&& __f); |
| 70 | }; |
| 71 | void f() { |
| 72 | typedef int T; |
| 73 | get_future<int>(); |
| 74 | typedef int& U; |
| 75 | shared_future<int&> f1 = get_future<int&>(); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | // This is OK. The variables have internal linkage and therefore no language |
| 80 | // linkage. |
| 81 | extern "C" { |
| 82 | static int test7_x; |
| 83 | } |
| 84 | extern "C++" { |
| 85 | extern int test7_x; |
| 86 | } |
| 87 | extern "C++" { |
| 88 | static int test7_y; |
| 89 | } |
| 90 | extern "C" { |
| 91 | extern int test7_y; |
| 92 | } |
| 93 | extern "C" { typedef int test7_F(); static test7_F test7_f; } |
| 94 | extern "C++" { extern test7_F test7_f; } |
| 95 | |
| 96 | // FIXME: This should be invalid. The function has no language linkage, but |
| 97 | // the function type has, so this is redeclaring the function with a different |
| 98 | // type. |
| 99 | extern "C++" { |
| 100 | static void test8_f(); |
| 101 | } |
| 102 | extern "C" { |
| 103 | extern void test8_f(); |
| 104 | } |
| 105 | extern "C" { |
| 106 | static void test8_g(); |
| 107 | } |
| 108 | extern "C++" { |
| 109 | extern void test8_g(); |
| 110 | } |
| 111 | |
| 112 | extern "C" { |
| 113 | void __attribute__((overloadable)) test9_f(int c); // expected-note {{previous declaration is here}} |
| 114 | } |
| 115 | extern "C++" { |
| 116 | void __attribute__((overloadable)) test9_f(int c); // expected-error {{declaration of 'test9_f' has a different language linkage}} |
| 117 | } |
| 118 | |
| 119 | extern "C" { |
| 120 | void __attribute__((overloadable)) test10_f(int); |
| 121 | void __attribute__((overloadable)) test10_f(double); |
| 122 | } |
| 123 | |
| 124 | extern "C" { |
| 125 | void test11_f() { |
| 126 | void __attribute__((overloadable)) test11_g(int); |
| 127 | void __attribute__((overloadable)) test11_g(double); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | namespace test12 { |
| 132 | const int n = 0; |
| 133 | extern const int n; |
| 134 | void f() { |
| 135 | extern const int n; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | namespace test13 { |
| 140 | static void a(void); |
| 141 | extern void a(); |
| 142 | static void a(void) {} |
| 143 | } |
| 144 | |
| 145 | namespace test14 { |
| 146 | // Anonymous namespace implies internal linkage, so 'static' has no effect. |
| 147 | namespace { |
| 148 | void a(void); |
| 149 | static void a(void) {} |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | namespace test15 { |
| 154 | const int a = 5; // expected-note {{previous definition is here}} |
| 155 | static const int a; // expected-error {{redefinition of 'a'}} |
| 156 | } |
| 157 | |
| 158 | namespace test16 { |
| 159 | extern "C" { |
| 160 | class Foo { |
| 161 | int x; |
| 162 | friend int bar(Foo *y); |
| 163 | }; |
| 164 | int bar(Foo *y) { |
| 165 | return y->x; |
| 166 | } |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | namespace test17 { |
| 171 | namespace { |
| 172 | struct I { |
| 173 | }; |
| 174 | } |
| 175 | template <typename T1, typename T2> void foo() {} |
| 176 | template <typename T, T x> void bar() {} // expected-note {{candidate function}} |
| 177 | inline void *g() { |
| 178 | struct L { |
| 179 | }; |
| 180 | // foo<L, I>'s linkage should be the merge of UniqueExternalLinkage (or |
| 181 | // InternalLinkage in c++11) and VisibleNoLinkage. The correct answer is |
| 182 | // NoLinkage in both cases. This means that using foo<L, I> as a template |
| 183 | // argument should fail. |
| 184 | return reinterpret_cast<void*>(bar<typeof(foo<L, I>), foo<L, I> >); // expected-error {{reinterpret_cast cannot resolve overloaded function 'bar' to type 'void *}} |
| 185 | } |
| 186 | void h() { |
| 187 | g(); |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | namespace test18 { |
| 192 | template <typename T> struct foo { |
| 193 | template <T *P> static void f() {} |
| 194 | static void *g() { return (void *)f<&x>; } |
| 195 | static T x; |
| 196 | }; |
| 197 | template <typename T> T foo<T>::x; |
| 198 | inline void *f() { |
| 199 | struct S { |
| 200 | }; |
| 201 | return foo<S>::g(); |
| 202 | } |
| 203 | void *h() { return f(); } |
| 204 | } |
| 205 | |
| 206 | extern "C" void pr16247_foo(int); |
| 207 | static void pr16247_foo(double); |
| 208 | void pr16247_foo(int) {} |
| 209 | void pr16247_foo(double) {} |
| 210 | |
| 211 | namespace PR16247 { |
| 212 | extern "C" void pr16247_bar(int); |
| 213 | static void pr16247_bar(double); |
| 214 | void pr16247_bar(int) {} |
| 215 | void pr16247_bar(double) {} |
| 216 | } |
| 217 | namespace PR18964 { |
| 218 | unsigned &*foo; //expected-error{{'foo' declared as a pointer to a reference of type}} |
| 219 | extern struct {} *foo; // don't assert |
| 220 | } |
| 221 | |
| 222 | namespace typedef_name_for_linkage { |
| 223 | template<typename T> struct Use {}; |
| 224 | |
| 225 | struct A { A(); A(const A&); ~A(); }; |
| 226 | |
| 227 | typedef struct { |
| 228 | A a; |
| 229 | } B; |
| 230 | |
| 231 | struct C { |
| 232 | typedef struct { |
| 233 | A a; |
| 234 | } D; |
| 235 | }; |
| 236 | |
| 237 | typedef struct { |
| 238 | void f() { static int n; struct Inner {};} |
| 239 | } E; |
| 240 | |
| 241 | // FIXME: Ideally this would be accepted in all modes. In C++98, we trigger a |
| 242 | // linkage calculation to drive the "internal linkage type as template |
| 243 | // argument" warning. |
| 244 | typedef struct { |
| 245 | void f() { struct Inner {}; Use<Inner> ui; } |
| 246 | } F; |
| 247 | #if __cplusplus < 201103L |
| 248 | // expected-error@-2 {{unsupported: typedef changes linkage of anonymous type, but linkage was already computed}} |
| 249 | // expected-note@-5 {{use a tag name here}} |
| 250 | #endif |
| 251 | } |
| 252 | |